| POISSON (Random) EVENTS | 2 | ||||||||||||
| What is the probability of 3 or fewer vehicles arriving in 1 minute if the arrival rate is 120 vph? | |||||||||||||
| II. | P(n <= N) = Sum from 0 to N for: P(n) | Remember: | |||||||||||
| P(n <= 3) = Sum from 0 to 3 for: P(n) | X0 = 1 | ||||||||||||
| P(n <= 3) = P(0) + P(1) + P(2) + P(3) | 0! = 1 | ||||||||||||
| P(0)=e-(120veh/hour)(1min*1 hr./60 min)[(120veh/hr)(1min*1hr./60min)]0/0! = 0.135 | |||||||||||||
| P(1)=e-(120veh/hour)(1min*1 hr./60 min)[(120veh/hr)(1min*1hr./60min)]1/1! = 0.271 | |||||||||||||
| P(2)=e-(120veh/hour)(1min*1 hr./60 min)[(120veh/hr)(1min*1hr./60min)]2/(1*2) = 0.271 | |||||||||||||
| P(3)=e-(120veh/hour)(1min*1 hr./60 min)[(120veh/hr)(1min*1hr./60min)]3/(1*2*3) = 0.180 | |||||||||||||
| P(n <= 3) = 0.135 + 0.271 + 0.271 + 0.180 = 0.857 | |||||||||||||
| What is the probability of more than 3 vehicles arriving in 1 minute if the arrival rate is 120 vph? | |||||||||||||
| III. | P(n > N) = 1 - P(n <= N) | Remember: | |||||||||||
| P(n > 3) = 1 - P(n <= 3) | X0 = 1 | ||||||||||||
| P(n > 3) = 1 - 0.857 = 0.143 | 0! = 1 | ||||||||||||