POISSON (Random) EVENTS |
|
|
|
|
|
2 |
|
|
What
is the probability of 3 or fewer
vehicles arriving in 1 minute if the arrival rate is 120 vph? |
|
|
|
II. |
P(n <= N)
= Sum from 0 to N for: P(n) |
|
Remember: |
|
|
P(n <= 3) = Sum from 0 to 3 for: P(n) |
|
X0 = 1 |
|
|
P(n <= 3) = P(0) + P(1) + P(2) + P(3) |
|
0! = 1 |
|
|
|
|
|
|
P(0)=e-(120veh/hour)(1min*1
hr./60 min)[(120veh/hr)(1min*1hr./60min)]0/0! = 0.135 |
|
|
|
|
P(1)=e-(120veh/hour)(1min*1
hr./60 min)[(120veh/hr)(1min*1hr./60min)]1/1! = 0.271 |
|
|
|
|
P(2)=e-(120veh/hour)(1min*1
hr./60 min)[(120veh/hr)(1min*1hr./60min)]2/(1*2) = 0.271 |
|
|
|
|
P(3)=e-(120veh/hour)(1min*1
hr./60 min)[(120veh/hr)(1min*1hr./60min)]3/(1*2*3) = 0.180 |
|
|
|
|
|
P(n <= 3) = 0.135 + 0.271 + 0.271 + 0.180 = 0.857 |
|
|
|
|
|
|
|
|
|
|
|
What
is the probability of more than 3
vehicles arriving in 1 minute if the arrival rate is 120 vph? |
|
|
|
III. |
P(n > N) =
1 - P(n <= N) |
|
Remember: |
|
|
P(n > 3) = 1 - P(n <= 3) |
|
X0 = 1 |
|
|
P(n > 3) = 1 - 0.857 = 0.143 |
|
0! = 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|